LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting lncRNA-miRNA interactions based on interactome network and graphlet interaction.

Photo by boxedwater from unsplash

In the development and treatment of many human diseases, the regulatory roles between lncRNAs and miRNAs are important, but much remains unknown about them; moreover, experimental methods for analyzing them… Click to show full abstract

In the development and treatment of many human diseases, the regulatory roles between lncRNAs and miRNAs are important, but much remains unknown about them; moreover, experimental methods for analyzing them are expensive and time-consuming. In this work, we applied a semi-supervised interactome network-based approach to explore and forecast the latent interaction between lncRNAs and miRNAs. We constructed graphs according to the similarity of each of lncRNAs and miRNAs and determined the number of graphlet interaction isomers between nodes in these two graphs. According to the two graphs and the known interactive relationship, we calculated a score for lncRNA-miRNA pairs, as the prediction result. The results showed that the model (LMI-INGI) was reliable in fivefold cross-validation (AUC = 0.8957, PRE = 0.6815, REC = 0.8842, F1 score = 0.7452, AUPR = 0.9213). We also tested the model with data based on the similarity of expression profile and similarity of function for verifying the applicability of LMI-INGI, and the resulting AUC value was 0.9197 and 0.9006, respectively. Compared with the other four algorithms and variable similarity tests, our model successfully demonstrated superiority and good generalizability. LMI-INGI would be helpful in forecasting interactions between lncRNAs and miRNAs.

Keywords: interactome network; lncrna mirna; graphlet interaction; interaction; lncrnas mirnas

Journal Title: Genomics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.