Peptidyl-prolyl isomerase Pin1 has been reported to be associated with endothelial dysfunction. However, the role of smooth muscle Pin1 in the vascular system remains unclear. Here, we examined the potential… Click to show full abstract
Peptidyl-prolyl isomerase Pin1 has been reported to be associated with endothelial dysfunction. However, the role of smooth muscle Pin1 in the vascular system remains unclear. Here, we examined the potential function of Pin1 in smooth muscle cells (SMCs) and its contribution to abdominal aortic aneurysm (AAA) pathogenesis. The level of Pin1 expression was found to be elevated in human AAA tissues and mainly localized to SMCs. We constructed smooth muscle-specific Pin1 knockout mice to explore the role of this protein in AAA formation and to elucidate the underlying mechanisms. AAA formation and elastin degradation were hindered by Pin1 depletion in the angiotensin II-induced mouse model. Pin1 depletion reversed the angiotensin II-induced pro-inflammatory and synthetic SMC phenotype switching via the nuclear factor (NF)-κB p65/Klf4 axis. Moreover, Pin1 depletion inhibited the angiotensin II-induced matrix metalloprotease activities. Mechanically, Pin1 deficiency destabilized NF-κB p65 by promoting its polyubiquitylation. Further, we found STAT1/3 bound to the Pin1 promoter, revealing that activation of STAT1/3 was responsible for the increased expression of Pin1 under angiotensin II stimulation. Thus, these results suggest that Pin1 regulates pro-inflammatory and synthetic SMC phenotype switching and could be a novel therapeutic target to limit AAA pathogenesis.
               
Click one of the above tabs to view related content.