LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose.

The direct generation of electricity from the most abundant renewable sugar, glucose, is an appealing alternative to the production of liquid biofuels and biohydrogen. However, enzyme-catalyzed bioelectricity generation from glucose… Click to show full abstract

The direct generation of electricity from the most abundant renewable sugar, glucose, is an appealing alternative to the production of liquid biofuels and biohydrogen. However, enzyme-catalyzed bioelectricity generation from glucose suffers from low yields due to the incomplete oxidation of the six-carbon compound glucose via one or few enzymes. Here, we demonstrate a synthetic ATP- and CoA-free 12-enzyme pathway to implement the complete oxidation of glucose in vitro. This pathway is comprised of glucose phosphorylation via polyphosphate glucokinase, NADH generation catalyzed by glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), electron transfer from NADH to the anode, and glucose 6-phosphate regeneration via the non-oxidative pentose phosphate pathway and gluconeogenesis. The faraday efficiency from glucose to electrons via this pathway was as high as 98.8%, suggesting the generation of nearly 24 electrons per molecule of glucose. The generated current density was greatly increased from 2.8 to 6.9mAcm-2 by replacing a low-activity G6PDH with a high-activity G6PDH and introducing a new enzyme, 6-phosphogluconolactonase, between G6PDH and 6PGDH. These results suggest the great potential of high-yield bioelectricity generation through in vitro metabolic engineering.

Keywords: generation; metabolic engineering; bioelectricity generation; oxidation

Journal Title: Metabolic engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.