LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural Biology of Human GPCR Drugs and Endogenous Ligands - Insights from NMR Spectroscopy.

Photo by nci from unsplash

G protein-coupled receptors (GPCRs) represent the largest class of "druggable" proteins in the human genome. For more than a decade, crystal structures and, more recently, cryoEM structures of GPCR complexes… Click to show full abstract

G protein-coupled receptors (GPCRs) represent the largest class of "druggable" proteins in the human genome. For more than a decade, crystal structures and, more recently, cryoEM structures of GPCR complexes have provided unprecedented insight into GPCR drug binding and cell signaling. Nevertheless, structure determination of receptors in complexes with weakly binding molecules or complex polypeptides remains especially challenging, including for hormones, many of which have so far eluded researchers. Nuclear magnetic resonance (NMR) spectroscopy has emerged as a promising approach to determine structures of ligands bound to their receptors and to provide insights into the dynamics and pharmacokinetics of GPCR-bound drugs. The capability to investigate compounds with weak binding affinities has also been leveraged in NMR applications to identify novel lead compounds in drug screening campaigns. We review recent structural biology studies of GPCR ligands by NMR, highlighting new methodologies enabling studies of GPCRs with native sequences and in native-like membrane environments that provide insights into important drugs and endogenous ligands.

Keywords: endogenous ligands; structural biology; nmr spectroscopy; biology; spectroscopy; drugs endogenous

Journal Title: Methods
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.