LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Acquisition and processing of high-speed atomic force microscopy videos for single amyloid aggregate observation.

Photo from wikipedia

The structural dynamics of the amyloid protein aggregation process are associated with neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. High-speed atomic force microscopy (HS-AFM) is able to visualize the… Click to show full abstract

The structural dynamics of the amyloid protein aggregation process are associated with neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. High-speed atomic force microscopy (HS-AFM) is able to visualize the structural dynamics of individual aggregate species that otherwise cannot be distinguished. HS-AFM observations also detect impurities in the sample, and thus, experiments require relatively high sample purity. To derive valid information regarding the structural dynamics of the sample from the high-speed AFM images, a correction of the influence caused by the drift of the stage (scanner) from all frames is required. However, correcting the HS-AFM videos that consist of a large number of images requires significant effort. Here, using HS-AFM observation of α-synuclein fibril elongation as an example, we propose an HS-AFM image processing procedure to correct stage drift in the x-, y-, and z-directions with the free software ImageJ. ImageJ with default settings and our plugins attached to this article can process and analyze image stacks, which allow users to easily detect and show the temporal change in sample structures. This processing method can be automatically applied to numerous HS-AFM videos by batch processing with a series of ImageJ macrofunctions.

Keywords: speed atomic; microscopy; force microscopy; atomic force; high speed

Journal Title: Methods
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.