LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

GC6mA-Pred: A deep learning approach to identify DNA N6-methyladenine sites in the rice genome.

Photo from wikipedia

MOTIVATION DNA N6-methyladenine (6mA) is a pivotal DNA modification for various biological processes. More accurate prediction of 6mA methylation sites plays an irreplaceable part in grasping the internal rationale of… Click to show full abstract

MOTIVATION DNA N6-methyladenine (6mA) is a pivotal DNA modification for various biological processes. More accurate prediction of 6mA methylation sites plays an irreplaceable part in grasping the internal rationale of related biological activities. However, the existing prediction methods only extract information from a single dimension, which has some limitations. Therefore, it is very necessary to obtain the information of 6mA sites from different dimensions, so as to establish a reliable prediction method. RESULTS In this study, a neural network based bioinformatics model named GC6mA-Pred is proposed to predict N6-methyladenine modifications in DNA sequences. GC6mA-Pred extracts significant information from both sequence level and graph level. In the sequence level, GC6mA-Pred uses a three-layer convolution neural network (CNN) model to represent the sequence. In the graph level, GC6mA-Pred employs graph neural network (GNN) method to integrate various information contained in the chemical molecular formula corresponding to DNA sequence. In our newly built dataset, GC6mA-Pred shows better performance than other existing models. The results of comparative experiments have illustrated that GC6mA-Pred is capable of producing a marked effect in accurately identifying DNA 6mA modifications.

Keywords: gc6ma pred; sequence; information; dna methyladenine; gc6ma

Journal Title: Methods
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.