LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phylogeny, divergence times, and diversification in Calophyllaceae: Linking key characters and habitat changes to the evolution of neotropical Calophylleae.

Photo by passimage from unsplash

The clusioid clade comprises five monophyletic families: Bonnetiaceae, Calophyllaceae, Clusiaceae s.s., Hypericaceae, and Podostemaceae. Even though the circumscription of these families is well established, phylogenetic relationships within some families remain… Click to show full abstract

The clusioid clade comprises five monophyletic families: Bonnetiaceae, Calophyllaceae, Clusiaceae s.s., Hypericaceae, and Podostemaceae. Even though the circumscription of these families is well established, phylogenetic relationships within some families remain unresolved. This study aims to infer phylogenetic relationships within the neotropical Calophylleae based on a broad sampling of taxa and a multilocus approach. We then use our phylogenetic framework as basis to investigate the evolution and biogeography of Calophylleae and diversification shifts in Calophyllaceae. To reconstruct the phylogeny of the neotropical Calophylleae, we used five plastid (matK, ndhF, rbcL, psbA-trnH, and trnK), two mitochondrial (matR and rps3), and two nuclear (EMB2765 and ITS) markers, including previously published and newly generated sequences. We sampled 74 species, increasing sampling of neotropical taxa by 500%. Our phylogenetic hypothesis for Calophyllaceae provides additional support for the monophyly of all genera and allowed us to identify four main clades: Calophyllum, Kayea, Mammea, and the Neotropical clade. The Neotropical clade includes three main lineages, a small clade composed of Clusiella and Marila, and a large HaCaKi clade (i.e., Haplocarpa, Caraipa, and Kilmeyera) that is sister to Mahurea exstipulata. The evolution of three morphological traits (i.e., fleshy fruits, anther glands, and winged seeds) were shown to be associated with changes in evolutionary dynamics in Calophyllaceae, while a biome shift was detected in Kielmeyera, affecting net diversification within this genus. Major geological and climatic events such as the Andean uplift and a gradual decrease in temperatures seem to have influenced diversification rates within the Neotropical Calophylleae.

Keywords: neotropical calophylleae; calophylleae; phylogeny divergence; calophyllaceae; clade

Journal Title: Molecular phylogenetics and evolution
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.