LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prognostics-based qualification of high-power white LEDs using Lévy process approach

Photo by jontyson from unsplash

Abstract Due to their versatility in a variety of applications and the growing market demand, high-power white light-emitting diodes (LEDs) have attracted considerable attention. Reliability qualification testing is an essential… Click to show full abstract

Abstract Due to their versatility in a variety of applications and the growing market demand, high-power white light-emitting diodes (LEDs) have attracted considerable attention. Reliability qualification testing is an essential part of the product development process to ensure the reliability of a new LED product before its release. However, the widely used IES-TM-21 method does not provide comprehensive reliability information. For more accurate and effective qualification, this paper presents a novel method based on prognostics techniques. Prognostics is an engineering technology predicting the future reliability or determining the remaining useful lifetime (RUL) of a product by assessing the extent of deviation or degradation from its expected normal operating conditions. A Levy subordinator of a mixed Gamma and compound Poisson process is used to describe the actual degradation process of LEDs characterized by random sporadic small jumps of degradation degree, and the reliability function is derived for qualification with different distribution forms of jump sizes. The IES LM-80 test results reported by different LED vendors are used to develop and validate the qualification methodology. This study will be helpful for LED manufacturers to reduce the total test time and cost required to qualify the reliability of an LED product.

Keywords: high power; power white; process; qualification; reliability

Journal Title: Mechanical Systems and Signal Processing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.