LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a scientific torsional system experiment containing controlled single or dual-clearance non-linearities: Examination of step-responses

Photo by omarprestwich from unsplash

Abstract The chief goal of this paper is to propose a new laboratory experiment that exhibits the step-response of a torsional system containing one or two controlled clearances. This work… Click to show full abstract

Abstract The chief goal of this paper is to propose a new laboratory experiment that exhibits the step-response of a torsional system containing one or two controlled clearances. This work is motivated by the disadvantages of prior large-scale experiments which utilize production vehicle drivelines and their components with significant real-life complexities. The conceptual and physical design features, which include sizing, modal properties, excitation, and instrumentation, are discussed with the goal of creating a controlled experiment. Like prior literature, a step-down torque excitation is selected and all analyses are performed on the acceleration signals to observe vibro-impact in the time domain. Typical measurements (for both the single and dual-clearance configurations) exhibit rich non-linear behavior, including the double-sided impact regime and a time-varying oscillatory period. Additionally, new measurements are compared to predictions from simple reduced order non-linear models to verify the feasibility of the proposed experiment. Finally, the utility of this experiment is demonstrated by comparing its measurements to a prior large-scale experiment that accommodates a production vehicle clutch damper with multiple stages. The hardening and softening effects in both experiments are discussed in the context of double and single-sided impacts as well as the oscillatory periods that vary with time.

Keywords: experiment; step; single dual; torsional system; dual clearance

Journal Title: Mechanical Systems and Signal Processing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.