LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Audio signal analysis for tool wear monitoring in sheet metal stamping

Abstract Stamping tool wear can significantly degrade product quality, and hence, online tool condition monitoring is a timely need in many manufacturing industries. Even though a large amount of research… Click to show full abstract

Abstract Stamping tool wear can significantly degrade product quality, and hence, online tool condition monitoring is a timely need in many manufacturing industries. Even though a large amount of research has been conducted employing different sensor signals, there is still an unmet demand for a low-cost easy to set up condition monitoring system. Audio signal analysis is a simple method that has the potential to meet this demand, but has not been previously used for stamping process monitoring. Hence, this paper studies the existence and the significance of the correlation between emitted sound signals and the wear state of sheet metal stamping tools. The corrupting sources generated by the tooling of the stamping press and surrounding machinery have higher amplitudes compared to that of the sound emitted by the stamping operation itself. Therefore, a newly developed semi-blind signal extraction technique was employed as a pre-processing technique to mitigate the contribution of these corrupting sources. The spectral analysis results of the raw and extracted signals demonstrate a significant qualitative relationship between wear progression and the emitted sound signature. This study lays the basis for employing low-cost audio signal analysis in the development of a real-time industrial tool condition monitoring system.

Keywords: audio signal; analysis; tool; tool wear; signal analysis; sheet metal

Journal Title: Mechanical Systems and Signal Processing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.