Abstract In this article, an extremely versatile predictive model for a newly developed Basilar meta-Membrane (BM 2 ) sensors is reported with variable engineering parameters that contribute to it’s frequency… Click to show full abstract
Abstract In this article, an extremely versatile predictive model for a newly developed Basilar meta-Membrane (BM 2 ) sensors is reported with variable engineering parameters that contribute to it’s frequency selection capabilities. The predictive model reported herein is for advancement over existing method by incorporating versatile and nonhomogeneous (e.g. functionally graded) model parameters that could not only exploit the possibilities of creating complex combinations of broadband frequency sensors but also explain the unique unexplained physical phenomenon that prevails in BM 2 , e.g. tailgating waves. In recent years, few notable attempts were made to fabricate the artificial basilar membrane, mimicking the mechanics of the human cochlea within a very short range of frequencies. To explain the operation of these sensors a few models were proposed. But, we fundamentally argue the “fabrication to explanation” approach and proposed the model driven predictive design process for the design any (BM 2 ) as broadband sensors. Inspired by the physics of basilar membrane, frequency domain predictive model is proposed where both the material and geometrical parameters can be arbitrarily varied. Broadband frequency is applicable in many fields of science, engineering and technology, such as, sensors for chemical, biological and acoustic applications. With the proposed model, which is three times faster than its FEM counterpart, it is possible to alter the attributes of the selected length of the designed sensor using complex combinations of model parameters, based on target frequency applications. Finally, the tailgating wave peaks in the artificial basilar membranes that prevails in the previously reported experimental studies are also explained using the proposed model.
               
Click one of the above tabs to view related content.