LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Separation of multiple local-damage-related components from vibration data using Nonnegative Matrix Factorization and multichannel data fusion

Abstract The problem of local damage detection in case of analyzing vibration signal from rotating machines is mostly related to the detection of periodic impulsive components. Depending on various features… Click to show full abstract

Abstract The problem of local damage detection in case of analyzing vibration signal from rotating machines is mostly related to the detection of periodic impulsive components. Depending on various features of the signal, this task can be relatively simple in some cases (e.g. for an impulsive component in the presence of Gaussian noise). However, in our case multiple impulsive components occupying with the overlapping frequency bands are present. For all components, the impulses can be periodic. In this article, authors present a novel methodology based on data fusion from multichannel vibration data from heavy-duty industrial gearbox operating in the driving station of a belt conveyor. The proposed method is based on the factorization of spectrograms using Generalized Hierarchical Alternating Least Squares Nonnegative Matrix Factorization with Beta-Divergence (later referred to as β -HALS NMF). Partial information obtained from the factorization is fused into a single data set for each impulsive component present in the signal. Finally, Griffin-Lim algorithm is used to estimate the complex phase layer of artificial spectrograms allowing to recover the near-perfect time series of each impulsive component extracted from the signal. This method has been tested on four-channel vibration data.

Keywords: data fusion; vibration; factorization; vibration data; nonnegative matrix; local damage

Journal Title: Mechanical Systems and Signal Processing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.