LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A method for the experimental identification of equivalent viscoelastic models from vibration of thin plates

Photo from wikipedia

Abstract Aim of the present study is the identification of equivalent viscoelastic models for layered thin walled structures, obtained from vibration measurement only, able to fit the experimental data on… Click to show full abstract

Abstract Aim of the present study is the identification of equivalent viscoelastic models for layered thin walled structures, obtained from vibration measurement only, able to fit the experimental data on a relatively wide frequency range by means of a minimum number of parameters. A novel approach is proposed, based on a definition of an equivalent modal damping ratio applied to the circle-fit technique, to overcome the difficulties related to the identification of modal parameters when adopting non-conventional viscoelastic models. When the structural internal dissipative effects are dominant, this procedure identifies the parameters of an equivalent Young’s modulus in the frequency domain, representing the viscoelastic properties of a homogenized structure as a scalar function with frequency-dependent real and imaginary parts. The proposed procedure is applied to the analysis of Aluminum plates coated by damping pads and of plates made by Quiet Aluminum. To fit the experimentally found equivalent modal damping ratios, several viscoelastic models are adopted and compared (viscous, hysteretic, generalized Maxwell, fractional derivative damping, and in particular the Fractional Kelvin-Voigt model), assessing the accuracy of the identified parameters by comparison of numerically simulated with experimentally measured frequency response functions.

Keywords: identification equivalent; vibration; frequency; viscoelastic models; identification; equivalent viscoelastic

Journal Title: Mechanical Systems and Signal Processing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.