LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of vehicle driving conditions with incorporation of stochastic forecasting and machine learning and a case study in energy management of plug-in hybrid electric vehicles

Photo from wikipedia

Abstract Prediction of short-term future driving conditions can contribute to energy management of plug-in hybrid electric vehicles and subsequent improvement of their fuel economy. In this study, a fused short-term… Click to show full abstract

Abstract Prediction of short-term future driving conditions can contribute to energy management of plug-in hybrid electric vehicles and subsequent improvement of their fuel economy. In this study, a fused short-term forecasting model for driving conditions is established by incorporating the stochastic forecasting and machine learning. The Markov chain is applied to calculate the transition probability of historical driving data, by which the stochastic prediction is conducted based on the Monte Carlo algorithm. Then, a neural network is employed to learn the current driving information and main knowledge after the simplified correlation of characteristic parameters, and meanwhile the genetic algorithm is adopted to optimize the initial weight and thresholds of networks. Finally, the short-term velocity prediction is achieved by combining them, and the overall performance is evaluated by four typical criteria. Simulation results indicate that the proposed fusion algorithm outperforms the single Markov model, the radial basis function neural network and the back propagation neural network with respect to the prediction precision and the difference distribution between expectation and prediction values. In addition, a case study is conducted by applying the built prediction algorithm in energy management of a plug-in hybrid electric vehicle, and simulation results highlight that the proposed algorithm can supply preferable velocity prediction, thereby facilitating improvement of the operating economy of the vehicle.

Keywords: management plug; hybrid electric; prediction; driving conditions; energy management; plug hybrid

Journal Title: Mechanical Systems and Signal Processing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.