LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Micro-structured optical fiber sensor for simultaneous measurement of temperature and refractive index

Photo from wikipedia

Abstract Through using micro-machining method for optical fiber sensor, a kind of miniature, compact and composite structural all-fiber sensor is presented. Based on manufacturing two micro-holes with certain distance in… Click to show full abstract

Abstract Through using micro-machining method for optical fiber sensor, a kind of miniature, compact and composite structural all-fiber sensor is presented. Based on manufacturing two micro-holes with certain distance in ordinary single-mode fiber Bragg grating (FBG) by excimer laser processing technique, we fabricate a dual Fabry–Perot-FBG (FP-FBG) composite fiber interferometric sensor, which can be used in simultaneous measurement for liquid’s refractive index (RI) and temperature change. Due to every micro-hole and the dual micro-holes in fiber acting as different Fabry–Perot (FP) cavities, this kind of sensor has not only different RI sensitivities but also different temperature sensitivities, which are corresponding to the wavelength shifts of the fine interference fringes and spectral envelope, respectively. The experimental results show that the spectral wavelength shift keep better linear response for temperature and RI change, so that we can select the higher temperature and RI sensitivities as well as the analyzed sensitivities of FBG to utilize them for constituting a sensitivity coefficients matrix. Finally, the variations of liquid’s temperature and RI are detected effectively, and the resolutions can reach to 0.1 °C and 1.0 × 10 - 5  RIU. These characteristics are what other single-type sensors don’t have, so that this kind of all-fiber dual FP-FBG composite fiber interferometric sensor can be used in extremely tiny liquid environment for measuring different physical quantities simultaneously.

Keywords: temperature; fiber; micro; sensor; fiber sensor; optical fiber

Journal Title: Optical Fiber Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.