LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of porous nano/micro structured LiFePO4/C cathode materials for lithium-ion batteries by spray-drying method

Photo from wikipedia

Abstract In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show… Click to show full abstract

Abstract In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5–5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 °C. The LFP/C microspheres obtained at calcination temperature of 700 °C are composed of numerous particles with sizes of ∼20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 m2/g. The specific discharge capacities of the LFP/C obtained at 700 °C are 162.43, 154.35 and 144.03 mA·h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.

Keywords: micro structured; spray drying; porous nano; cathode materials; cathode; nano micro

Journal Title: Transactions of Nonferrous Metals Society of China
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.