LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ore-forming mechanism of Xiajinbao gold deposit in Pingquan, Hebei based on fluid inclusions and stable isotopes

Photo by teveir from unsplash

Abstract The Xiajinbao gold deposit is located in Yong'an—Xiayingfang—Maojiagou polymetallic metallogenic belt, which is an important metallogenic belt in North China block. In this paper, we present a detailed study… Click to show full abstract

Abstract The Xiajinbao gold deposit is located in Yong'an—Xiayingfang—Maojiagou polymetallic metallogenic belt, which is an important metallogenic belt in North China block. In this paper, we present a detailed study on fluid inclusions and stable isotopes of the Xiajinbao gold deposit, Hebei Province, China, aiming at discussing the ore source, evolution of ore-forming fluid and ore-forming mechanism of the deposit. The macroscopic geological characteristics, S and Pb isotopic analysis results show that the source of ore-forming materials is mainly from granitic magma, and subordinately from country rocks. H and O isotopic composition features indicate that the ore-forming fluid is mainly derived from magmatic water. Fluid inclusion characteristics show that the ore-forming fluid experienced boiling during the early mineralization stage, which led to the precipitation of gold. Fluid mixing dominated the precipitation of the ore-forming materials during the middle and late stages. The gold precipitation was caused by water/rock reaction throughout the whole ore-forming process.

Keywords: deposit; fluid; xiajinbao gold; gold deposit; ore forming

Journal Title: Transactions of Nonferrous Metals Society of China
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.