LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of welding heat input and post-weld aging time on microstructure and mechanical properties in dissimilar friction stir welded AA7075–AA5086

Photo from wikipedia

Abstract The effects of welding heat input and post-weld heat treatment on the mechanical and microstructural aspects of dissimilar friction stir welds of age-hardened AA7075-T6 and strain hardenable AA5086-H32 aluminium… Click to show full abstract

Abstract The effects of welding heat input and post-weld heat treatment on the mechanical and microstructural aspects of dissimilar friction stir welds of age-hardened AA7075-T6 and strain hardenable AA5086-H32 aluminium alloys were investigated. X-ray diffraction (XRD) residual stress analysis and tensile testing together with optical metallography and transmission electron microscopy (TEM) were performed to assess the effects of process parameters on welded joints. It was discovered that joints produced without heat sink exhibited more homogeneous stir zones than other joints. Of the natural aging time studied, higher amount of solid solution during rapid cooling of welds produced higher driving force for increase in hardness in the AA7075 side during natural aging. Natural aging within stirring zone and thermo-mechanical affected zone of AA7075 side resulted in a 10 to 25 MPa reduction in the residual stress in these zones; its effect decreased considerably in the welds performed without heat sink. In addition, natural aging had no noticeable effect on the joint strength.

Keywords: input post; stir; effect; heat input; welding heat; heat

Journal Title: Transactions of Nonferrous Metals Society of China
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.