LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hot tearing behaviors and in-situ thermal analysis of Mg-7Zn-xCu-0.6Zr alloys

Photo by dawson2406 from unsplash

Abstract Thermal analysis was used to investigate the microstructural evolution of Mg-7Zn-xCu-0.6Zr alloys during solidification. The effect of Cu content (0, 1, 2 and 3, mass fraction, %) on the… Click to show full abstract

Abstract Thermal analysis was used to investigate the microstructural evolution of Mg-7Zn-xCu-0.6Zr alloys during solidification. The effect of Cu content (0, 1, 2 and 3, mass fraction, %) on the hot tearing behavior of the Mg-7Zn-xCu-0.6Zr alloys was investigated with a constrained rod casting (CRC) apparatus, equipped with a load sensor and a data acquisition system. The thermal analysis results of Mg-7Zn-xCu-0.6Zr alloy revealed that the alloy consisted of two distinct phases: α-Mg and MgZn2. Three distinct peaks were observed in the alloys with Cu addition, which were identified as α-Mg, MgZnCu and MgZn2. In addition, the reaction temperature of α-Mg decreased and the reaction temperatures of MgZn2 and MgZnCu increased as the Cu content increased. The experimental results of hot tearing demonstrated that the addition of Cu significantly reduced the hot tearing susceptibility (HTS) of Mg-7Zn-xCu-0.6Zr alloys due to the higher eutectic temperature and the shorter solidification temperature region.

Keywords: 6zr alloys; thermal analysis; 7zn xcu; xcu 6zr; hot tearing

Journal Title: Transactions of Nonferrous Metals Society of China
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.