LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shear localization behavior in hat-shaped specimen of near-α Ti−6Al−2Zr−1Mo−1V titanium alloy loaded at high strain rate

Photo from wikipedia

Abstract The microstructure characteristics in early stage shear localization of near-α Ti−6Al−2Zr−1Mo−1V titanium alloy were investigated by split Hopkinson pressure bar (SHPB) tests using hat-shaped specimens. The microstructural evolution and… Click to show full abstract

Abstract The microstructure characteristics in early stage shear localization of near-α Ti−6Al−2Zr−1Mo−1V titanium alloy were investigated by split Hopkinson pressure bar (SHPB) tests using hat-shaped specimens. The microstructural evolution and deformation mechanisms of hat-shaped specimens were revealed by electron backscattered diffraction (EBSD) method. It is found that the nucleation and expansion of adiabatic shear band (ASB) are affected by both geometric and structural factors. The increase of dislocation density, structure fragment and temperature rise in the deformation-affected regions provide basic microstructural conditions. In addition to the dislocation slips, the extension twins detected in shear region also play a critical role in microstructural fragmentation due to twin-boundaries effect. Interestingly, the sandwich structure imposes a crucial influence on ASB, which finally becomes a mature wide ASB in the dynamic deformation. However, due to much larger width, the sandwich structure in the middle of shear region is also possible to serve as favorable nucleation sites for crack initiation.

Keywords: 2zr 1mo; hat shaped; near 6al; 6al 2zr; shear localization; 1mo titanium

Journal Title: Transactions of Nonferrous Metals Society of China
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.