LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Characterization of Magnetically Actuated Helical Swimmers at Submillimeter-scale

Photo from archive.org

Bacteria with helical flagella show an ideal mechanism to swim at low Reynolds number. For application of artificial microswimmers, it is desirable to identify effects of structural and geometrical parameters… Click to show full abstract

Bacteria with helical flagella show an ideal mechanism to swim at low Reynolds number. For application of artificial microswimmers, it is desirable to identify effects of structural and geometrical parameters on the swimming performance. In this study, a double-end helical swimmer is proposed based on the usual single-end helical one to improve the forward-backward motion symmetry. The propulsion model of the artificial helical microswimmer is described. Influences of each helix parameter on the swimming velocity and propulsion efficiency are further analyzed. The optimal design for achieving a maximum propulsion velocity of submillimeter scale swimmers is performed based on some constraints. An experimental setup consisting of three-pair of Helmholtz coils is built for the helical microswimmers. Experiments of microswimmers with several groups of parameters were performed, and the results show the validity of the analysis and design.

Keywords: actuated helical; characterization magnetically; magnetically actuated; submillimeter scale; design characterization; design

Journal Title: Journal of Bionic Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.