LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

碱金属助剂对CoCu/TiO 2 催化剂上二氧化碳加氢合成长链烃的影响

Photo by lidia_nikole from unsplash

Abstract CoCu/TiO2 catalysts promoted using alkali metals (Li, Na, K, Rb, and Cs) were prepared by the homogeneous deposition-precipitation method followed by the incipient wetness impregnation method. The influences of… Click to show full abstract

Abstract CoCu/TiO2 catalysts promoted using alkali metals (Li, Na, K, Rb, and Cs) were prepared by the homogeneous deposition-precipitation method followed by the incipient wetness impregnation method. The influences of the alkali metals on the physicochemical properties of the CoCu/TiO2 catalysts and the catalytic performance for CO2 hydrogenation to long-chain hydrocarbons (C5+) were investigated in this work. According to the characterization of the catalysts based on X-ray photoelectron spectroscopy, X-ray diffraction, CO2 temperature-programmed desorption (TPD), and H2-TPD, the introduction of alkali metals could increase the CO2 adsorption and decrease the H2 chemisorption, which could suppress the formation of CH4, enhance the production of C5+, and decrease the hydrogenation activity. Among all the promoters, the Na-modified CoCu/TiO2 catalyst provided the maximum C5+ yield of 5.4%, with a CO2 conversion of 18.4% and C5+ selectivity of 42.1%, because it showed the strongest basicity and a slight decrease in the amount of H2 desorption; it also exhibited excellent catalytic stability of more than 200 h.

Keywords: cocu; cocu tio; alkali metals; co2; cocu tio2; spectroscopy

Journal Title: Chinese Journal of Catalysis
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.