LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Promotion effects of nickel-doped Al2O3-nanosheet-supported Au catalysts for CO oxidation

Photo by ylannmeyer from unsplash

Abstract Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2O3 nanosheets… Click to show full abstract

Abstract Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2O3 nanosheets was performed via a precipitation-hydrothermal method by varying the amount of Ni during the precipitation step. The prepared nanosheets were subsequently used as supports for the deposition of Au nanoparticles (NPs). The obtained Au/NixAl catalysts were studied in the context of CO oxidation to determine the effect of Ni doping on the supports. Enhanced catalytic performances were obtained for the Au/NixAl catalysts compared with those of the Au supported on bare Al2O3. The Ni content and pretreatment atmosphere were both shown to influence the catalytic activity. Pretreatment under a reducing atmosphere was beneficial for improving catalytic activity. The highest activity was observed for the catalysts with a Ni/Al molar ratio of 0.05, achieving complete CO conversion at 20 deg;C with a gold loading of 1 wt%. The in-situ FTIR results showed that the introduction of Ni strengthened CO adsorption on the Au NPs. The H2-TPR and O2-TPD results indicated that the introduction of Ni produced new oxygen vacancies and allowed the oxygen molecules to be adsorbed and activated more easily. The improved catalytic performance after doping Ni was attributed to the smaller size of the Au NPs and more active oxygen species.

Keywords: oxidation; effects nickel; promotion effects; catalytic activity; activity; nickel doped

Journal Title: Chinese Journal of Catalysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.