LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Versatile bifunctional nitrogen-doped porous carbon derived from biomass in catalytic reduction of 4-nitrophenol and oxidation of styrene

Photo from wikipedia

Abstract The scarcity and weak durability of metal, especially precious metal catalysts are big obstacles for their large-scale application in many reactions. The state-of-the-art of the catalytic science prefers such… Click to show full abstract

Abstract The scarcity and weak durability of metal, especially precious metal catalysts are big obstacles for their large-scale application in many reactions. The state-of-the-art of the catalytic science prefers such type of catalysts, which can replace metal-based catalysts to alleviate energy and environmental crises and exhibit catalytic performance comparable to or even exceeding these metal catalysts. Herein, we report that N-doped porous carbon (NKC) derived from cheap and abundant radish can be employed as versatile and efficient bifunctional catalysts in both the catalytic reduction of 4-nitrophenol (NRR) and oxidation of styrene (SOR). The series of NKC catalysts were prepared with a simple and facile one-pot strategy by coupling the N-doping, carbonization and KOH activation processes. These catalysts show hierarchical porosity, with the specific surface area, total pore volume and N-doping content ranging from 918.9–3062.7 m2 g−1, 1.01–2.04 cm3 g−1 and 1.29–15.3 at%, respectively. Interestingly, our finding suggests that the catalytic performance is not directly related to these parameters but correlates positively with the content of graphitic N dopants, which is the dominant contributor for impelling both the NRR and SOR. Another intriguing finding is that for both reactions, the optimal catalyst was found to be the NKC-3-800 which possesses the highest graphitic N content of 3.13 at%. In addition, to gain insight into the catalytic behavior, analyses of kinetics and thermodynamics were performed, and the catalytic mechanisms were postulated. This work paves the way for the construction of biomass-derived N-doped carbon catalysts for bi- or even multi-functional applications in various organic reactions.

Keywords: catalytic reduction; doped porous; carbon; reduction nitrophenol; oxidation styrene; porous carbon

Journal Title: Chinese Journal of Catalysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.