LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of bimetallic NiFe catalysts for methyl laurate hydrogenation

Photo by fabiooulucas from unsplash

Abstract The physicochemical properties of the prepared bimetallic NiFe/γ-Al2O3 catalysts can be affected by reduction temperature, which can change the hydrogenation activity and product selectivity for methyl laurate catalytic hydrogenation.… Click to show full abstract

Abstract The physicochemical properties of the prepared bimetallic NiFe/γ-Al2O3 catalysts can be affected by reduction temperature, which can change the hydrogenation activity and product selectivity for methyl laurate catalytic hydrogenation. The metal Ni active sites mainly promote the decarbonylation/decarboxylation (DCO/DCO2) reaction, and the addition of Fe can promote the hydrodeoxygenation (HDO) reaction of methyl laurate to produce C12 alkanes. The results of H2-TPR, XRD, H2-TPD and BET indicate that high reduction temperature is beneficial to the formation of metal or alloy active centers. The hydrogenation activity of bimetallic catalysts depends on the content of metal Ni, Fe and NiFe alloy. The ability of NiFe bimetallic catalyst to adsorb and activate H2 is obviously affected by reduction temperature. In the studied temperature range, Ni active centers have excellent hydrogenation and cracking performances, and the introduction of Fe species can effectively inhibit the cracking performance. The sequence of catalytic hydrogenation activity for these bimetallic catalysts is: NF420 > NF360 > NF450 > NF300. When the reduction temperature is 420°C, the prepared NF420 catalyst owns the best catalytic hydrogenation performances. The conversion of methyl laurate and the selectivity of alkanes are 93.3% and 90.0% at the reaction temperature of 380°C, respectively.

Keywords: reduction temperature; hydrogenation; bimetallic nife; methyl laurate

Journal Title: Journal of Fuel Chemistry and Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.