Let $\mathscr{F}$ be a holomorphic foliation by curves defined in a neighborhood of $0$ in $\mathbb{C}^{2}$ having $0$ as a hyperbolic singularity. Let $T$ be a harmonic current directed by… Click to show full abstract
Let $\mathscr{F}$ be a holomorphic foliation by curves defined in a neighborhood of $0$ in $\mathbb{C}^{2}$ having $0$ as a hyperbolic singularity. Let $T$ be a harmonic current directed by $\mathscr{F}$ which does not give mass to any of the two separatrices. We show that the Lelong number of $T$ at $0$ vanishes. Then we apply this local result to investigate the global mass distribution for directed harmonic currents on singular holomorphic foliations living on compact complex surfaces. Finally, we apply this global result to study the recurrence phenomenon of a generic leaf.
               
Click one of the above tabs to view related content.