LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Relative equilibrium states and class degree

Photo from wikipedia

Given a factor code $\unicode[STIX]{x1D70B}$ from a shift of finite type $X$ onto a sofic shift $Y$ , an ergodic measure $\unicode[STIX]{x1D708}$ on $Y$ , and a function $V$ on… Click to show full abstract

Given a factor code $\unicode[STIX]{x1D70B}$ from a shift of finite type $X$ onto a sofic shift $Y$ , an ergodic measure $\unicode[STIX]{x1D708}$ on $Y$ , and a function $V$ on $X$ with sufficient regularity, we prove an invariant upper bound on the number of ergodic measures on $X$ which project to $\unicode[STIX]{x1D708}$ and maximize the measure pressure $h(\unicode[STIX]{x1D707})+\int V\,d\unicode[STIX]{x1D707}$ among all measures in the fiber $\unicode[STIX]{x1D70B}^{-1}(\unicode[STIX]{x1D708})$ . If $\unicode[STIX]{x1D708}$ is fully supported, this bound is the class degree of $\unicode[STIX]{x1D70B}$ . This generalizes a previous result for the special case of $V=0$ and thus settles a conjecture raised by Allahbakhshi and Quas.

Keywords: stix; unicode stix; class degree; stix x1d708

Journal Title: Ergodic Theory and Dynamical Systems
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.