We investigate to what extent a minimal topological dynamical system is uniquely determined by a set of return times to some open set. We show that in many situations, this… Click to show full abstract
We investigate to what extent a minimal topological dynamical system is uniquely determined by a set of return times to some open set. We show that in many situations, this is indeed the case as long as the closure of this open set has no non-trivial translational symmetries. For instance, we show that under this assumption, two Kronecker systems with the same set of return times must be isomorphic. More generally, we show that if a minimal dynamical system has a set of return times that coincides with a set of return times to some open set in a Kronecker system with translationarily asymmetric closure, then that Kronecker system must be a factor. We also study similar problems involving nilsystems and polynomial return times. We state a number of questions on whether these results extend to other homogeneous spaces and transitive group actions, some of which are already interesting for finite groups.
               
Click one of the above tabs to view related content.