LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dimension estimates for iterated function systems and repellers. Part II

Photo from wikipedia

This is the second part of our study on the dimension theory of $C^1$ iterated function systems (IFSs) and repellers on $\mathbb {R}^d$ . In the first part [D.-J. Feng… Click to show full abstract

This is the second part of our study on the dimension theory of $C^1$ iterated function systems (IFSs) and repellers on $\mathbb {R}^d$ . In the first part [D.-J. Feng and K. Simon. Dimension estimates for $C^1$ iterated function systems and repellers. Part I. Preprint, 2020, arXiv:2007.15320], we proved that the upper box-counting dimension of the attractor of every $C^1$ IFS on ${\Bbb R}^d$ is bounded above by its singularity dimension, and the upper packing dimension of every ergodic invariant measure associated with this IFS is bounded above by its Lyapunov dimension. Here we introduce a generalized transversality condition (GTC) for parameterized families of $C^1$ IFSs, and show that if the GTC is satisfied, then the dimensions of the IFS attractor and of the ergodic invariant measures are given by these upper bounds for almost every (in an appropriate sense) parameter. Moreover, we verify the GTC for some parameterized families of $C^1$ IFSs on ${\Bbb R}^d$ .

Keywords: function systems; dimension; part; iterated function; dimension estimates

Journal Title: Ergodic Theory and Dynamical Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.