LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hausdorff and packing dimensions and measures for nonlinear transversally non-conformal thin solenoids

Photo from wikipedia

We extend the results of Hasselblatt and Schmeling [Dimension product structure of hyperbolic sets. Modern Dynamical Systems and Applications. Eds. B. Hasselblatt, M. Brin and Y. Pesin. Cambridge University Press,… Click to show full abstract

We extend the results of Hasselblatt and Schmeling [Dimension product structure of hyperbolic sets. Modern Dynamical Systems and Applications. Eds. B. Hasselblatt, M. Brin and Y. Pesin. Cambridge University Press, New York, 2004, pp. 331–345] and of Rams and Simon [Hausdorff and packing measure for solenoids. Ergod. Th. & Dynam. Sys.23 (2003), 273–292] for $C^{1+\varepsilon }$ hyperbolic, (partially) linear solenoids $\Lambda $ over the circle embedded in $\mathbb {R}^3$ non-conformally attracting in the stable discs $W^s$ direction, to nonlinear solenoids. Under the assumptions of transversality and on the Lyapunov exponents for an appropriate Gibbs measure imposing thinness, as well as the assumption that there is an invariant $C^{1+\varepsilon }$ strong stable foliation, we prove that Hausdorff dimension $\operatorname {\mathrm {HD}}(\Lambda \cap W^s)$ is the same quantity $t_0$ for all $W^s$ and else $\mathrm {HD}(\Lambda )=t_0+1$ . We prove also that for the packing measure, $0<\Pi _{t_0}(\Lambda \cap W^s)<\infty $ , but for Hausdorff measure, $\mathrm {HM}_{t_0}(\Lambda \cap W^s)=0$ for all $W^s$ . Also $0<\Pi _{1+t_0}(\Lambda ) <\infty $ and $\mathrm {HM}_{1+t_0}(\Lambda )=0$ . A technical part says that the holonomy along unstable foliation is locally Lipschitz, except for a set of unstable leaves whose intersection with every $W^s$ has measure $\mathrm {HM}_{t_0}$ equal to 0 and even Hausdorff dimension less than $t_0$ . The latter holds due to a large deviations phenomenon.

Keywords: alternatives jats; jats tex; jats alternatives; jats inline; tex math; inline formula

Journal Title: Ergodic Theory and Dynamical Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.