LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles.
Sign Up to like articles & get recommendations!
Hausdorff and packing dimensions and measures for nonlinear transversally non-conformal thin solenoids
We extend the results of Hasselblatt and Schmeling [Dimension product structure of hyperbolic sets. Modern Dynamical Systems and Applications. Eds. B. Hasselblatt, M. Brin and Y. Pesin. Cambridge University Press,… Click to show full abstract
We extend the results of Hasselblatt and Schmeling [Dimension product structure of hyperbolic sets. Modern Dynamical Systems and Applications. Eds. B. Hasselblatt, M. Brin and Y. Pesin. Cambridge University Press, New York, 2004, pp. 331–345] and of Rams and Simon [Hausdorff and packing measure for solenoids. Ergod. Th. & Dynam. Sys.23 (2003), 273–292] for $C^{1+\varepsilon }$ hyperbolic, (partially) linear solenoids $\Lambda $ over the circle embedded in $\mathbb {R}^3$ non-conformally attracting in the stable discs $W^s$ direction, to nonlinear solenoids. Under the assumptions of transversality and on the Lyapunov exponents for an appropriate Gibbs measure imposing thinness, as well as the assumption that there is an invariant $C^{1+\varepsilon }$ strong stable foliation, we prove that Hausdorff dimension $\operatorname {\mathrm {HD}}(\Lambda \cap W^s)$ is the same quantity $t_0$ for all $W^s$ and else $\mathrm {HD}(\Lambda )=t_0+1$. We prove also that for the packing measure, $0<\Pi _{t_0}(\Lambda \cap W^s)<\infty $, but for Hausdorff measure, $\mathrm {HM}_{t_0}(\Lambda \cap W^s)=0$ for all $W^s$. Also $0<\Pi _{1+t_0}(\Lambda ) <\infty $ and $\mathrm {HM}_{1+t_0}(\Lambda )=0$. A technical part says that the holonomy along unstable foliation is locally Lipschitz, except for a set of unstable leaves whose intersection with every $W^s$ has measure $\mathrm {HM}_{t_0}$ equal to 0 and even Hausdorff dimension less than $t_0$. The latter holds due to a large deviations phenomenon.
Share on Social Media:
  
        
        
        
Sign Up to like & get recommendations! 0
Related content
More Information
            
News
            
Social Media
            
Video
            
Recommended
               
Click one of the above tabs to view related content.