LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Subshifts and colorings on ascending HNN-extensions of finitely generated abelian groups

Photo from wikipedia

For an ascending HNN-extension $G*_{\psi }$ of a finitely generated abelian group G, we study how a synchronization between the geometry of the group and weak periodicity of a configuration… Click to show full abstract

For an ascending HNN-extension $G*_{\psi }$ of a finitely generated abelian group G, we study how a synchronization between the geometry of the group and weak periodicity of a configuration in $\mathcal {A}^{G*_{\psi }}$ forces global constraints on it, as well as in subshifts containing it. A particular case are Baumslag–Solitar groups $\mathrm {BS}(1,N)$ , $N\ge 2$ , for which our results imply that a $\mathrm {BS}(1,N)$ -subshift of finite type which contains a configuration with period $a^{N^\ell }\!, \ell \ge 0$ , must contain a strongly periodic configuration with monochromatic $\mathbb {Z}$ -sections. Then we study proper n-colorings, $n\ge 3$ , of the (right) Cayley graph of $\mathrm {BS}(1,N)$ , estimating the entropy of the associated subshift together with its mixing properties. We prove that $\mathrm {BS}(1,N)$ admits a frozen n-coloring if and only if $n=3$ . We finally suggest generalizations of the latter results to n-colorings of ascending HNN-extensions of finitely generated abelian groups.

Keywords: alternatives jats; jats tex; jats alternatives; jats inline; tex math; inline formula

Journal Title: Ergodic Theory and Dynamical Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.