We develop in this work a general version of paracontrolled calculus that allows to treat analytically within this paradigm a whole class of singular partial differential equations with the same… Click to show full abstract
We develop in this work a general version of paracontrolled calculus that allows to treat analytically within this paradigm a whole class of singular partial differential equations with the same efficiency as regularity structures. This work deals with the analytic side of the story and offers a toolkit for the study of such equations, under the form of a number of continuity results for some operators, while emphasizing the simple and systematic mechanics of computations within paracontrolled calculus, via the introduction of two model operations $\mathsf{E}$ and $\mathsf{F}$ . We illustrate the efficiency of this elementary approach on the example of the generalized parabolic Anderson model equation $$\begin{eqnarray}(\unicode[STIX]{x2202}_{t}+L)u=f(u)\unicode[STIX]{x1D701},\end{eqnarray}$$ on a 3-dimensional closed manifold, and the generalized KPZ equation $$\begin{eqnarray}(\unicode[STIX]{x2202}_{t}+L)u=f(u)\unicode[STIX]{x1D701}+g(u)(\unicode[STIX]{x2202}u)^{2},\end{eqnarray}$$ driven by a $(1+1)$ -dimensional space/time white noise.
               
Click one of the above tabs to view related content.