LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Capillary rise of non-aqueous liquids in cellulose sponges

Photo from archive.org

A cellulose sponge is a mundane porous medium composed of numerous microporous cellulose sheets surrounding macroscale voids. Here, we quantify the capillary rise dynamics of non-aqueous liquids in a sponge… Click to show full abstract

A cellulose sponge is a mundane porous medium composed of numerous microporous cellulose sheets surrounding macroscale voids. Here, we quantify the capillary rise dynamics of non-aqueous liquids in a sponge using a combination of experiment and theory. Although the classical law of Washburn is obeyed in the early stages, the wet front propagation is no longer diffusive in the late stages and follows a power law, $h\sim t^{1/4}$ , with $h$ and $t$ being the capillary rise height and time respectively. The transition of the power law is a consequence of the peculiar heterogeneous pore structure of cellulose sponges. The permeability and driving pressure change at the rise height above which the macro voids can no longer be filled completely due to significant effects of gravity. We rationalize the $t^{1/4}$ law by considering liquid flows along the corners of macro voids driven by capillary pressure of microscale wall pores.

Keywords: non aqueous; capillary rise; law; rise; cellulose sponges; aqueous liquids

Journal Title: Journal of Fluid Mechanics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.