LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh–Bénard convection

Photo by basilsamuellade from unsplash

We investigate the statistical properties of the kinetic $\unicode[STIX]{x1D700}_{u}$ and thermal $\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}$ energy dissipation rates in two-dimensional (2-D) turbulent Rayleigh–Bénard (RB) convection. Direct numerical simulations were carried out in a… Click to show full abstract

We investigate the statistical properties of the kinetic $\unicode[STIX]{x1D700}_{u}$ and thermal $\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}$ energy dissipation rates in two-dimensional (2-D) turbulent Rayleigh–Bénard (RB) convection. Direct numerical simulations were carried out in a box with unit aspect ratio in the Rayleigh number range $10^{6}\leqslant Ra\leqslant 10^{10}$ for Prandtl numbers $Pr=0.7$ and 5.3. The probability density functions (PDFs) of both dissipation rates are found to deviate significantly from a log-normal distribution. The PDF tails can be well described by a stretched exponential function, and become broader for higher Rayleigh number and lower Prandtl number, indicating an increasing degree of small-scale intermittency with increasing Reynolds number. Our results show that the ensemble averages $\langle \unicode[STIX]{x1D700}_{u}\rangle _{V,t}$ and $\langle \unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}\rangle _{V,t}$ scale as $Ra^{-0.18\sim -0.20}$ , which is in excellent agreement with the scaling estimated from the two global exact relations for the dissipation rates. By separating the bulk and boundary-layer contributions to the total dissipations, our results further reveal that $\langle \unicode[STIX]{x1D700}_{u}\rangle _{V,t}$ and $\langle \unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}\rangle _{V,t}$ are both dominated by the boundary layers, corresponding to regimes $I_{l}$ and $I_{u}$ in the Grossmann–Lohse (GL) theory (J. Fluid Mech., vol. 407, 2000, pp. 27–56). To include the effects of thermal plumes, the plume–background partition is also considered and $\langle \unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}\rangle _{V,t}$ is found to be plume dominated. Moreover, the boundary-layer/plume contributions scale as those predicted by the GL theory, while the deviations from the GL predictions are observed for the bulk/background contributions. The possible reasons for the deviations are discussed.

Keywords: dissipation rates; stix; unicode stix; stix x1d700

Journal Title: Journal of Fluid Mechanics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.