Experiments are presented that demonstrate how liquid-infused surfaces can reduce turbulent drag significantly in Taylor–Couette flow. The test liquid was water, and the test surface was composed of square microscopic… Click to show full abstract
Experiments are presented that demonstrate how liquid-infused surfaces can reduce turbulent drag significantly in Taylor–Couette flow. The test liquid was water, and the test surface was composed of square microscopic grooves measuring $100~\unicode[STIX]{x03BC}\text{m}$ to $800~\unicode[STIX]{x03BC}\text{m}$ , filled with alkane liquids with viscosities from 0.3 to 1.4 times that of water. We achieve drag reduction exceeding 35 %, four times higher than previously reported for liquid-infused surfaces in turbulent flow. The level of drag reduction increased with viscosity ratio, groove width, fluid area fraction and Reynolds number. The optimum groove width was given by $w^{+}\approx 35$ .
               
Click one of the above tabs to view related content.