LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bifurcations in a quasi-two-dimensional Kolmogorov-like flow

Photo by efekurnaz from unsplash

We present a combined experimental and theoretical study of the primary and secondary instabilities in a Kolmogorov-like flow. The experiment uses electromagnetic forcing with an approximately sinusoidal spatial profile to… Click to show full abstract

We present a combined experimental and theoretical study of the primary and secondary instabilities in a Kolmogorov-like flow. The experiment uses electromagnetic forcing with an approximately sinusoidal spatial profile to drive a quasi-two-dimensional (Q2D) shear flow in a thin layer of electrolyte suspended on a thin lubricating layer of a dielectric fluid. Theoretical analysis is based on a two-dimensional (2D) model (Suri et al., Phys. Fluids, vol. 26 (5), 2014, 053601), derived from first principles by depth-averaging the full three-dimensional Navier–Stokes equations. As the strength of the forcing is increased, the Q2D flow in the experiment undergoes a series of bifurcations, which is compared with results from direct numerical simulations of the 2D model. The effects of confinement and the forcing profile are studied by performing simulations that assume spatial periodicity and strictly sinusoidal forcing, as well as simulations with realistic no-slip boundary conditions and an experimentally validated forcing profile. We find that only the simulation subject to physical no-slip boundary conditions and a realistic forcing profile provides close, quantitative agreement with the experiment. Our analysis offers additional validation of the 2D model as well as a demonstration of the importance of properly modelling the forcing and boundary conditions.

Keywords: like flow; quasi two; two dimensional; forcing profile; kolmogorov like

Journal Title: Journal of Fluid Mechanics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.