LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-local continuum modelling of steady, dense granular heap flows

Dense granular heap flows are common in nature, such as during avalanches and landslides, as well as in industrial flows. In granular heap flows, rapid flow is localized near the… Click to show full abstract

Dense granular heap flows are common in nature, such as during avalanches and landslides, as well as in industrial flows. In granular heap flows, rapid flow is localized near the free surface with the thickness of the rapidly flowing layer dependent on the overall flow rate. In the region deep beneath the surface, exponentially decaying creeping flow dominates with characteristic decay length depending only on the geometry and not the overall flow rate. Existing continuum models for dense granular flow based upon local constitutive equations are not able to simultaneously predict both of these experimentally observed features – failing to even predict the existence of creeping flow beneath the surface. In this work, we apply a scale-dependent continuum approach – the non-local granular fluidity model – to steady, dense granular flows on a heap between two smooth, frictional side walls. We show that the model captures the salient features of both the flow-rate-dependent, rapidly flowing surface layer and the flow-rate-independent, slowly creeping bulk under steady flow conditions.

Keywords: flow rate; continuum; granular heap; dense granular; heap flows

Journal Title: Journal of Fluid Mechanics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.