LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of a homogeneous magnetic field on the electrospraying characteristics of sulfolane ferrofluids

Photo from archive.org

We explore the effect of an applied homogeneous magnetic field on the electrospraying characteristics of a ferrofluid in the cone-jet mode. A sulfolane-based ferrofluid mixed with the ionic liquid ethyl… Click to show full abstract

We explore the effect of an applied homogeneous magnetic field on the electrospraying characteristics of a ferrofluid in the cone-jet mode. A sulfolane-based ferrofluid mixed with the ionic liquid ethyl ammonium nitrate has been synthesized. These mixtures have negligible volatility under ambient conditions and remain stable under a very wide range of electrical conductivities $K$ . Magnetized Taylor cones spray with the same current emission characteristics as their non-magnetized counterparts in the shared voltage and flow rate parameter space. However, the magnetized Taylor cones studied remained stable at voltages 23 % lower than the non-magnetized spray; they also access flow rates 30 % and 40 % lower in ferrofluids with $K=0.3$ and $0.01~\text{S}~\text{m}^{-1}$ . In the lower voltage ranges available only to magnetized tips, unusually long stable cones are observed. The magnetic stabilization mechanism responsible for these two effects remains unclear. It is noteworthy that these strong effects arise even when the tip curvature of the strictly magnetized liquid is orders of magnitude smaller than that for the strictly electrified liquid.

Keywords: homogeneous magnetic; effect; electrospraying characteristics; magnetic field; field electrospraying

Journal Title: Journal of Fluid Mechanics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.