LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effect of compaction of a porous material confiner on detonation propagation

Photo from wikipedia

The fluid mechanics of the interaction between a porous material confiner and a steady propagating high explosive (HE) detonation in a two-dimensional slab geometry is investigated through analytical oblique wave… Click to show full abstract

The fluid mechanics of the interaction between a porous material confiner and a steady propagating high explosive (HE) detonation in a two-dimensional slab geometry is investigated through analytical oblique wave polar analysis and multi-material numerical simulation. Two HE models are considered, broadly representing the properties of either a high- or low-detonation-speed HE, which permits studies of detonation propagating at speeds faster or slower than the confiner sound speed. The HE detonation is responsible for driving the compaction front in the confiner, while, in turn, the high material density generated in the confiner as a result of the compaction process can provide a strong confinement effect on the HE detonation structure. Polar solutions that describe the local flow interaction of the oblique HE detonation shock and equilibrium state behind an oblique compaction wave with rapid compaction relaxation rates are studied for varying initial solid volume fractions of the porous confiner. Multi-material numerical simulations are conducted to study the effect of detonation wave driven compaction in the porous confiner on both the detonation propagation speed and detonation driving zone structure. We perform a parametric study to establish how detonation confinement is influenced both by the initial solid volume fraction of the porous confiner and by the time scale of the dynamic compaction relaxation process relative to the detonation reaction time scale, for both the high- and low-detonation-speed HE models. The compaction relaxation time scale is found to have a significant influence on the confinement dynamics, with slower compaction relaxation time scales resulting in more strongly confined detonations and increased detonation speeds. The dynamics of detonation confinement by porous materials when the detonation is propagating either faster or slower than the confiner sound speed is found to be significantly different from that with solid material confiners.

Keywords: confiner; effect; detonation; compaction; porous material

Journal Title: Journal of Fluid Mechanics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.