We study experimentally the dynamics and statistics of capillary waves forced by random steep gravity waves mechanically generated in the laboratory. Capillary waves are produced here by gravity waves from… Click to show full abstract
We study experimentally the dynamics and statistics of capillary waves forced by random steep gravity waves mechanically generated in the laboratory. Capillary waves are produced here by gravity waves from nonlinear wave interactions. Using a spatio-temporal measurement of the free surface, we characterize statistically the random regimes of capillary waves in the spatial and temporal Fourier spaces. For a significant wave steepness (0.2–0.3), power-law spectra are observed both in space and time, defining a turbulent regime of capillary waves transferring energy from the large scale to the small scale. Analysis of temporal fluctuations of the spatial spectrum demonstrates that the capillary power-law spectra result from the temporal averaging over intermittent and strong nonlinear events transferring energy to the small scale in a fast time scale, when capillary wave trains are generated in a way similar to the parasitic capillary wave generation mechanism. The frequency and wavenumber power-law exponents of the wave spectra are found to be in agreement with those of the weakly nonlinear wave turbulence theory. However, the energy flux is not constant through the scales and the wave spectrum scaling with this flux is not in good agreement with wave turbulence theory. These results suggest that theoretical developments beyond the classic wave turbulence theory are necessary to describe the dynamics and statistics of capillary waves in a natural environment. In particular, in the presence of broad-scale viscous dissipation and strong nonlinearity, the role of non-local and non-resonant interactions should be reconsidered.
               
Click one of the above tabs to view related content.