LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dissolution-driven convection in a heterogeneous porous medium

Photo by shalone86 from unsplash

Motivated by subsurface carbon sequestration, an experimental investigation of dissolution-driven Rayleigh–Darcy convection using two miscible fluids in a Hele-Shaw cell is conducted. A thin horizontal layer of circular impermeable discs… Click to show full abstract

Motivated by subsurface carbon sequestration, an experimental investigation of dissolution-driven Rayleigh–Darcy convection using two miscible fluids in a Hele-Shaw cell is conducted. A thin horizontal layer of circular impermeable discs is inserted to create an environment with heterogeneous and anisotropic permeability. The Sherwood number that measures the convective mass transfer rate between two fluids at the interface is linked to different parameters of the disc layer, including the disc size, spacing, layer permeability and its relative height with respect to the fluid interface. It is surprising that the convective mass transfer rate in our configuration is dominated by the disc spacing, but almost independent of either the disc size or the mean permeability of the layer. To explain this dependence, the convective mass transfer rate is decomposed into the number, velocity and density contrast of fingers travelling through the disc layer. Both the number and density contrast of fingers show dependences on the disc layer permeability, even though the product of them, the mass transfer rate, does not. In addition, the density contrast also shows a non-monotonic dependence on the disc spacing. The transition point is at a spacing that is close to the finger width. Based on this observation, a simple model based on mixing and scale competition is proposed, and it shows an excellent agreement with the experimental results.

Keywords: transfer rate; layer; mass transfer; convection; dissolution driven

Journal Title: Journal of Fluid Mechanics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.