LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Azimuthal-mode solutions of two-dimensional Euler flows and the Chaplygin–Lamb dipole

Photo from wikipedia

Exact solutions for multipolar azimuthal-mode vortices in two-dimensional Euler flows are presented. Flow solutions with non-vanishing far-field velocity are provided for any set of azimuthal wavenumbers $m$ and arbitrary number… Click to show full abstract

Exact solutions for multipolar azimuthal-mode vortices in two-dimensional Euler flows are presented. Flow solutions with non-vanishing far-field velocity are provided for any set of azimuthal wavenumbers $m$ and arbitrary number $n$ of vorticity shells. For azimuthal wavenumbers $m=0$ and $m=1$ , the far-field velocity is a rigid motion and unsteady flow solutions with vanishing far-field velocity are obtained by means of a time-dependent change of reference frame. Addition of these first two modes, in the case of $n=1$ , results in a particular Chaplygin–Lamb (C–L) dipole, with continuous and vanishing vorticity at the vortex boundary. Numerical simulations suggest that this particular C–L dipole is stable.

Keywords: chaplygin lamb; euler flows; dipole; two dimensional; azimuthal mode; dimensional euler

Journal Title: Journal of Fluid Mechanics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.