In this work, we carried out direct numerical simulations in large channel domains and studied the kinematics and dynamics of fully localised turbulent bands at Reynolds number $Re=750$. Our results… Click to show full abstract
In this work, we carried out direct numerical simulations in large channel domains and studied the kinematics and dynamics of fully localised turbulent bands at Reynolds number $Re=750$. Our results show that the downstream end of the band features fast streak generation and travels into the adjacent laminar flow, whereas streaks at the upstream end decay continually and more slowly. This asymmetry is responsible for the transverse growth of the band. We particularly investigated the mechanism of streak generation at the downstream end, which drives the growth of the band. We identified a spanwise inflectional instability associated with the local mean flow near the downstream end, and our results strongly suggest that this instability is responsible for the streak generation and ultimately for the growth of the band. Based on our study, we propose a possible self-sustaining mechanism of fully localised turbulent bands at low Reynolds numbers in channel flow.
               
Click one of the above tabs to view related content.