LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Submersion of impacting spheres at low Bond and Weber numbers owing to a confined pool

Photo from wikipedia

We numerically investigate the mechanism resulting in fate change of a hydrophobic sphere impacting onto a confined pool, that is, at the same impact speed, it does not submerge in… Click to show full abstract

We numerically investigate the mechanism resulting in fate change of a hydrophobic sphere impacting onto a confined pool, that is, at the same impact speed, it does not submerge in a wide pool but does in a narrow pool. We find that the reflection of the impact-induced gravity-capillary waves from the pool boundary is responsible for this phenomenon. In particular, the return of the wave to the symmetry axis may coincide with the rising of the impacting sphere to the water surface, which corresponds to the critical conditions of the fate change. Moreover, for the spheres at the onset of submersion in a wide pool, our analysis suggests that this scenario also accounts for an interesting observation in the numerical simulations. That is, the effective pool size $S_{c}$, beyond which the submersion of impacting spheres is no longer affected by the pool size $S$, is mainly dependent on the sphere diameter, no matter whether the surface waves are the capillary or gravity waves. For $S

Keywords: impacting spheres; pool; submersion impacting; weber; confined pool; submersion

Journal Title: Journal of Fluid Mechanics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.