LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shape curvature effects in viscous streaming

Photo from wikipedia

Viscous streaming flows generated by objects of constant curvature (circular cylinders, infinite plates) have been well understood. Yet, characterization and understanding of such flows when multiple body length scales are… Click to show full abstract

Viscous streaming flows generated by objects of constant curvature (circular cylinders, infinite plates) have been well understood. Yet, characterization and understanding of such flows when multiple body length scales are involved has not been looked into in rigorous detail. We propose a simplified setting to understand and explore the effect of multiple body curvatures on streaming flows, analysing the system through the lens of bifurcation theory. Our set-up consists of periodic, regular lattices of cylinders characterized by two distinct radii, so as to inject discrete curvatures into the system, which in turn affect the streaming field generated due to an oscillatory background flow. We demonstrate that our understanding based on this system, and in particular the role of bifurcations in determining the local flow topology, can be then generalized to a variety of individual convex shapes presenting a spectrum of curvatures, explaining prior experimental and computational observations. Thus, this study illustrates a route towards the rational manipulation of viscous streaming flow topology, through regulated variation of object geometry.

Keywords: shape curvature; topology; viscous streaming; curvature effects; effects viscous

Journal Title: Journal of Fluid Mechanics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.