Abstract In this paper we study turbulent thermal convection driven by free-surface evaporation at the top and a uniformly heated wall at the bottom. More specifically, we report on direct… Click to show full abstract
Abstract In this paper we study turbulent thermal convection driven by free-surface evaporation at the top and a uniformly heated wall at the bottom. More specifically, we report on direct numerical simulations over 1.25 decades of Rayleigh number, Ra. At the top of the cubic domain, a shear-free boundary condition acts as an approximation of a free surface, and different evaporation rates form the basis of a temperature gradient assigned as a non-zero Neumann boundary condition. The corresponding lower wall temperature is fixed and we assess the thermal mixing on the water side of the air–water interface. The set-up is considered a simplified model of the turbulent natural convection in the upper volumes of spent-fuel pools of nuclear power plants. Surface temperatures are investigated over a range of 40 K, resulting in a sixteenfold increase in evaporation rates. Our work allows, for the first time, analysis of the features and mean flow statistics of this particular thermal convection configuration. Results show that a shear-free surface increases heat transfer within the domain; however, the exponent in the diagnosed power-law relation between the Nusselt and Rayleigh numbers, $Nu = 0.178Ra^{0.301}$, is similar to that of classical turbulent Rayleigh–Bénard convection. Further, the free slip accelerates the fluid after impingement on the upper boundary, significantly affecting the structure of the large-scale circulation in the container. Analysis of the flow statistics then shows how the shear-free surface introduces inhomogeneities in thermal boundary layer heights. Overall, the investigated turbulent convection configuration shows unique traits, borrowing from both turbulent Rayleigh–Bénard convection and evaporative cooling.
               
Click one of the above tabs to view related content.