LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The wake structure of a propeller operating upstream of a hydrofoil

Photo from wikipedia

Abstract Large eddy simulations are presented on the wake flow of a notional propeller (the INSEAN E1658), upstream of a NACA0020 hydrofoil of infinite spanwise extent, mimicking propeller–rudder interaction. Results… Click to show full abstract

Abstract Large eddy simulations are presented on the wake flow of a notional propeller (the INSEAN E1658), upstream of a NACA0020 hydrofoil of infinite spanwise extent, mimicking propeller–rudder interaction. Results show that the flow physics is dominated by the interaction between the coherent structures populating the wake of the propeller and the surface of the hydrofoil. The suction and pressure side branches of the tip vortices move towards inner and outer radii, respectively. The hub vortex is split into two branches at the leading edge of the hydrofoil. The two branches of the hub vortex shift in the opposite direction, compared to the tip vortices, towards the rudder suction sides. As a result, a contraction of the propeller wake on the suction sides occurs, leading to increased levels of shear stress and turbulence. At downstream locations along the hydrofoil the spanwise deflection of the suction side branches of the tip vortices affects the trajectory of the overall propeller wake, including also the smaller helical vortices across the span of the wake of each blade and the two branches of the hub vortex on the two sides of the hydrofoil. This cross-stream shift persists, producing a strong anti-symmetry of the overall wake.

Keywords: suction; tip vortices; propeller; wake; hydrofoil; hub vortex

Journal Title: Journal of Fluid Mechanics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.