LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Blackout analysis of Mars entry missions

Photo by dawson2406 from unsplash

Abstract A new methodology to accurately and efficiently examine the radio frequency blackout phenomenon during the hypersonic reentry process is introduced and validated. The current state-of-the-art thermochemical modelling of $\textrm… Click to show full abstract

Abstract A new methodology to accurately and efficiently examine the radio frequency blackout phenomenon during the hypersonic reentry process is introduced and validated. The current state-of-the-art thermochemical modelling of $\textrm {CO}_2$ flows is reviewed and one-dimensional stagnation line studies are performed in order to determine a suitable chemical mechanism for the electron density modelling. Hypersonic computational fluid dynamics (CFD) simulations are performed with a simplified chemical model including only neutral species, in order to calculate the flow field surrounding the ExoMars Schiapparelli module in flight conditions. A novel decoupled CFD approach is then applied where the calculation of the electron density is performed separately using a computationally inexpensive Lagrangian approach. Subsequently, a ray tracing algorithm is applied in order to model the propagation of electromagnetic waves in the wake flow past the ExoMars vehicle accounting for collisions between electrons and gas particles. The numerical results of the proposed novel approach for blackout analysis consisting of CFD, Lagrangian and ray tracing algorithms are in good agreement with the flight data.

Keywords: analysis mars; methodology; blackout analysis; analysis; mars entry; entry missions

Journal Title: Journal of Fluid Mechanics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.