LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Motion of an arbitrarily shaped particle in a density stratified fluid

Photo from wikipedia

In this work, we theoretically investigate the motion of an arbitrarily shaped particle in a linear density stratified fluid with weak stratification and negligible inertia. We calculate the hydrodynamic force… Click to show full abstract

In this work, we theoretically investigate the motion of an arbitrarily shaped particle in a linear density stratified fluid with weak stratification and negligible inertia. We calculate the hydrodynamic force and torque experienced by the particle using the method of matched asymptotic expansions. We analyse our results for two classes of particles (non-skew and skew) depending on whether the particle possesses a centre of hydrodynamic stress. For both classes, we derive general expressions for the modified resistance tensors in the presence of stratification. We demonstrate the application of our results by considering some specific examples of particles settling in a direction parallel to the density gradient by considering both the limits of high ($Pe\gg 1$) and low ($Pe\ll 1$) Péclet numbers. We find that presence of stratification causes a slender body to rotate and settle along the broader side due to the contribution of the hydrostatic torque. Our work sheds light on the impact of stratification on the transport of arbitrarily shaped particles in density stratified environments in low-Reynolds-number regimes.

Keywords: motion arbitrarily; density stratified; arbitrarily shaped; shaped particle; density; particle

Journal Title: Journal of Fluid Mechanics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.