LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geometric phase methods with Stokes theorem for a general viscous swimmer

Photo from wikipedia

Abstract The geometric phase techniques for swimming in viscous flows express the net displacement of a swimmer as a path integral of a field in configuration space. This representation can… Click to show full abstract

Abstract The geometric phase techniques for swimming in viscous flows express the net displacement of a swimmer as a path integral of a field in configuration space. This representation can be transformed into an area integral for simple swimmers using the Stokes theorem. Since this transformation applies for any loop, the integrand of this area integral can be used to help design these swimmers. However, the extension of this Stokes theorem technique to more complicated swimmers is hampered by problems with variables that do not commute and by how to visualise and understand the higher-dimensional spaces. In this paper, we develop a treatment for each of these problems, thereby allowing the displacement of general swimmers in any environment to be designed and understood similarly to simple swimmers. The net displacement arising from non-commuting variables is tackled by embedding the integral into a higher-dimensional space, which can then be visualised through a suitability constructed surface. These methods are developed for general swimmers and demonstrated on three benchmark examples: Purcell's two-hinged swimmer, an axisymmetric squirmer in free space and an axisymmetric squirmer approaching a free interface. We show in particular that, for swimmers with more than two modes of deformation, there exists an infinite set of strokes that generate each net displacement. Hence, in the absence of additional restrictions, general microscopic swimmers do not have a single stroke that maximises their displacement.

Keywords: stokes theorem; net displacement; phase methods; swimmer; geometric phase

Journal Title: Journal of Fluid Mechanics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.